کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4976592 1451834 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model predictive control-based dynamic coordinate strategy for hydraulic hub-motor auxiliary system of a heavy commercial vehicle
ترجمه فارسی عنوان
استراتژی مختصات پویا مبتنی بر کنترل پیش بینی مبتنی بر سیستم کمکی موتور هیدرولیکی هیدرولیکی یک وسیله نقلیه تجاری سنگین
کلمات کلیدی
سیستم کمکی موتور هیدرولیک، مختصات پویا، کنترل پیش بینی مدل، مدل غیر خطی، خودرو کامیون سنگین
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
Equipping a hydraulic hub-motor auxiliary system (HHMAS), which mainly consists of a hydraulic variable pump, a hydraulic hub-motor, a hydraulic valve block and hydraulic accumulators, with part-time all-wheel-drive functions improves the power performance and fuel economy of heavy commercial vehicles. The coordinated control problem that occurs when HHMAS operates in the auxiliary drive mode is addressed in this paper; the solution to this problem is the key to the maximization of HHMAS. To achieve a reasonable distribution of the engine power between mechanical and hydraulic paths, a nonlinear control scheme based on model predictive control (MPC) is investigated. First, a nonlinear model of HHMAS with vehicle dynamics and tire slip characteristics is built, and a controller-design-oriented model is simplified. Then, a steady-state feedforward + dynamic MPC feedback controller (FMPC) is designed to calculate the control input sequence of engine torque and hydraulic variable pump displacement. Finally, the controller is tested in the MATLAB/Simulink and AMESim co-simulation platform and the hardware-in-the-loop experiment platform, and its performance is compared with that of the existing proportional-integral-derivative controller and the feedforward controller under the same conditions. Simulation results show that the designed FMPC has the best performance, and control performance can be guaranteed in a real-time environment. Compared with the tracking control error of the feedforward controller, that of the designed FMPC is decreased by 85% and the traction efficiency performance is improved by 23% under a low-friction-surface condition. Moreover, under common road conditions for heavy commercial vehicles, the traction force can increase up to 13.4-15.6%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 101, 15 February 2018, Pages 97-120
نویسندگان
, , , , , ,