کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4976702 | 1451839 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tight butt joint weld detection based on optical flow and particle filtering of magneto-optical imaging
ترجمه فارسی عنوان
تشخیص جوش بافتی تنگ بر اساس جریان نوری و فیلتر کردن ذرات از تصویر برداری مغناطیسی نوری
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
جوش مفصل بافتی تنگ تصویر مغناطیسی نوری، روش جریان نوری، فیلتر ذرات،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
It is a challenge to detect the weld position during tight butt joint laser welding in that the tight butt joint is non-grooved and invisible. This paper proposes a novel method for tight butt joint weld detection based on magneto optical imaging. Two pieces of weldment were magnetized by an electromagnet so that they could show magnetic N and S polarity respectively. When a polarized light was projected on a magneto-optical film, it would deflect due to magneto-optical effect. In accordance with magneto field distribution, an image formed on the visual sensor. A transition zone of magnetic field distribution which corresponded to the butt joint could be shown in a magneto optical image of weldment. Variation features of magnetic field distribution were obtained by using image sequence optical flow method, and a particle filter was integrated to make an accurate prediction on weld position. Weld position was obtained by calculating the maximum value of optical flow intensity in the vertical direction, and a particle filter was used to realize the accurate prediction on weld position. Experimental results showed that the proposed method was effective in detection of weld and realizing weld seam tracking.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 96, November 2017, Pages 16-30
Journal: Mechanical Systems and Signal Processing - Volume 96, November 2017, Pages 16-30
نویسندگان
Xiangdong Gao, Ling Mo, Deyong You, Zhuman Li,