کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977022 | 1451844 | 2017 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A fault diagnosis scheme for planetary gearboxes using modified multi-scale symbolic dynamic entropy and mRMR feature selection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Mechanical Systems and Signal Processing - Volume 91, July 2017, Pages 295-312
Journal: Mechanical Systems and Signal Processing - Volume 91, July 2017, Pages 295-312
نویسندگان
Yongbo Li, Yuantao Yang, Guoyan Li, Minqiang Xu, Wenhu Huang,