کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977416 | 1451924 | 2018 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Skeleton embedded motion body partition for human action recognition using depth sequences
ترجمه فارسی عنوان
اسکلت پارتیشن بدن حرکت بدن را برای به رسمیت شناختن عمل انسان با استفاده از توالی عمق تعبیه می کند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص عمل، توالی عمق، اسکلت تعبیه شده است پارتیشن بدن حرکتی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
The low-cost depth cameras have facilitated the research of human action recognition in the last decades. Despite various approaches have been presented to improve the recognition accuracy, they are rarely extended to online recognition task in clutter scenes. In this paper, we propose an effective approach, which is insensitive to various temporal duration and adequate for complex background, for human action recognition using depth sequences. By embedding the skeleton information into depth maps, the human body is partitioned to a set of motion parts, which could take account of the geometrical structure of human body and contribute to the recognition task in complex background. A local spatio-temporal scaled pyramid is applied to obtain compact local feature representation. The simplified Fisher vector encoding method is introduced to aggregate local coarse features into a discriminative representation with unified form. The proposed approach is validated on three public benchmark datasets, i.e., MSR Daily Activity 3D, MSR Action Pairs, and MSR Action 3D. The experimental results demonstrate the effectiveness and feasibility of proposed approach for real-time applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 143, February 2018, Pages 56-68
Journal: Signal Processing - Volume 143, February 2018, Pages 56-68
نویسندگان
Ji Xiaopeng, Cheng Jun, Feng Wei, Tao Dapeng,