کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977419 | 1451924 | 2018 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Bias compensated zero attracting normalized least mean square adaptive filter and its performance analysis
ترجمه فارسی عنوان
تقاربی جبران صفر جذب فیلتر کمتر تطبیقی کمتر میانگین و تجزیه و تحلیل عملکرد آن را دارد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
اختلال جبران شد ورودی پر سر و صدا، عادی متوسط مربع، جذب صفر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
This paper presents a new normalized least mean square (NLMS) algorithm for sparse system identification where the input signal is corrupted by white measurement noise. The proposed algorithm, which is called bias-compensated zero attracting NLMS (BC-ZA-NLMS) algorithm, introduces the bias-compensation vector to get rid of the bias resulting from noisy input and introduces an l1-norm penalty in the cost function of the NLMS algorithm to make full use of the special property of the sparse system. In addition, to address the time variant sparsity, the bias-compensated reweight ZA-NLMS (BC-RZA-NLMS)) algorithm is also proposed, where the l1-norm penalty in the cost function of BC-ZA-NLMS algorithm is replaced by a log-sum function. Owing to the zero attractors in update equation, the proposed algorithms are superior to the conventional NLMS and bias-compensated NLMS (BC-NLMS) algorithms in the application of identifying the sparse system. A transient analysis of the proposed algorithms is also derived, which is able to accurately predict the behaviors of proposed algorithms. In addition, a stability analysis is introduced. Monte Carlo (MC) simulations are conducted to demonstrate the advantage of the proposed algorithms and to validate the theoretical results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 143, February 2018, Pages 94-105
Journal: Signal Processing - Volume 143, February 2018, Pages 94-105
نویسندگان
Wang Wenyuan, Zhao Haiquan, Chen Badong,