کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4977437 1451924 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized sparse covariance-based estimation
ترجمه فارسی عنوان
برآورد مبتنی بر کوواریانس ضعیف عمومی
کلمات کلیدی
اتصالات کواریانس، بازسازی انعطاف پذیر، بهینه سازی محدب،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر پردازش سیگنال
چکیده انگلیسی
In this work, we generalize the recent sparse iterative covariance-based estimator (SPICE) by extending the problem formulation to allow for different norm constraints on the signal and noise parameters in the covariance model. The resulting extended SPICE algorithm offers the same benefits as the regular SPICE algorithm, including being hyper-parameter free, but the choice of norms allows further control of the sparsity in the resulting solution. We also show that the proposed extension is equivalent to solving a penalized regression problem, providing further insight into the differences between the extended and original SPICE formulations. The performance of the method is evaluated for different choices of norms, indicating the preferable performance of the extended formulation as compared to the original SPICE algorithm. Finally, we introduce two implementations of the proposed algorithm, one gridless formulating for the sinusoidal case, resulting in a semi-definite programming problem, and one grid-based, for which an efficient implementation is given.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 143, February 2018, Pages 311-319
نویسندگان
, , ,