کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977510 | 1451927 | 2017 | 31 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-stream deep networks for human action classification with sequential tensor decomposition
ترجمه فارسی عنوان
شبکه های عمیق چند جریان برای طبقه بندی فعالیت انسان با تجزیه تانسور ترتیبی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی اقدام، حرکت جهانی، تجزیه تانسور، واحد تکراری دروغ شبکه عصبی مکرر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
Effective spatial-temporal representation of motion information is crucial to human action classification. In spite of the attempt of most existing methods capturing spatial-temporal structure and learning motion representations with deep neural networks, such representations are failing to model action at their full temporal extent. To address this problem, this paper proposes a global motion representation by using sequential low-rank tensor decomposition. Specifically, we model an action sequence as a third-order tensor with spatiotemporal structure. Then, by using low-rank tensor decomposition, partial motion of objects in global context were preserved which will be feeding into deep architecture to automatically learning global-term motion features. To simultaneously exploit static spatial features, short-term motion and global-term motion in the video, we describe a multi-stream framework with recurrent convolutional architectures which is end-to-end trainable. Gated Recurrent Unit (GRU) is used as our recurrent unit which have fewer parameters than Long Short-Term Memory (LSTM). Extensive experiments were conducted on two challenging dataset: HMDB51 and UCF101. Experimental results show that our method achieves state-of-the-art performance on the HMDB51 dataset, and is comparable to the state-of-the-art methods on the UCF101 dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 140, November 2017, Pages 198-206
Journal: Signal Processing - Volume 140, November 2017, Pages 198-206
نویسندگان
Huiwen Guo, Xinyu Wu, Wei Feng,