کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4977761 | 1451933 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Optimal constraint vectors for set-membership affine projection algorithms
ترجمه فارسی عنوان
الگوریتم های محدودیت مطلوب برای الگوریتم های طرح ریزی وابسته مجموعه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
پردازش سیگنال سازگار، فیلتر تنظیم عضویت طرح ریزی صحیح، بهینه سازی محدب،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
پردازش سیگنال
چکیده انگلیسی
There is a growing interest in adaptive filtering solutions whose learning processes are data selective, bringing about computational reduction and energy savings while improving estimation accuracy. The set-membership affine projection algorithms are a representative family of algorithms including data-selection mechanisms. The update process of these algorithms depends on the choice of a constraint vector (CV) which, up to now, is based on some heuristics. In this paper we propose an optimal CV and discuss some of its inherent properties. The resulting problem falls into a convex optimization framework, allowing some unexpected features to surface; for instance, the widely used simple choice CV is asymptotically optimal for statistically white stationary inputs. Simulations indicate the optimal CV outperforms the simple choice CV regarding update rates and steady-state mean squared errors for statistically colored inputs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Signal Processing - Volume 134, May 2017, Pages 285-294
Journal: Signal Processing - Volume 134, May 2017, Pages 285-294
نویسندگان
Wallace A. Martins, Markus V.S. Lima, Paulo S.R. Diniz, Tadeu N. Ferreira,