کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
497845 862946 2015 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Explicit dynamics simulation of blade cutting of thin elastoplastic shells using “directional” cohesive elements in solid-shell finite element models
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Explicit dynamics simulation of blade cutting of thin elastoplastic shells using “directional” cohesive elements in solid-shell finite element models
چکیده انگلیسی

The intentional or accidental cutting of thin shell structures by means of a sharp object is of interest in many engineering applications. The process of cutting involves several types of nonlinearities, such as large deformations, contact, crack propagation and, in the case of laminated shells, delamination. In addition to these, a special difficulty is represented by the blade sharpness, whose accurate geometric resolution would require meshes with characteristic size of the order of the blade curvature radius. A computational finite element approach for the simulation of blade cutting of thin shells is proposed and discussed. The approach is developed in an explicit dynamics framework. Solid-shell elements are used for the discretization, in view of possible future inclusion in the model of delamination processes. Since a sharp blade can interfere with the transmission of cohesive forces between the crack flanks in the cohesive process zone, standard cohesive interface elements are not suited for the simulation of this type of problems unless extremely fine meshes, with characteristic size comparable to the blade curvature radius, are used. To circumvent the problem, the use of a new type of directional cohesive interface element, previously proposed for the simulation of crack propagation in elastic shells, is further developed and reformulated for application to the cutting of elastoplastic thin structures, discretized by solid-shell elements. The proposed approach is validated by means of application to several cutting problems of engineering interest.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 285, 1 March 2015, Pages 515–541
نویسندگان
, ,