کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4978607 | 1452897 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Intersection crash prediction modeling with macro-level data from various geographic units
ترجمه فارسی عنوان
مدل سازی پیش بینی تصادف تقاطع با داده های سطح کلان از واحد های مختلف جغرافیایی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل پیش بینی سقوط، ایمنی ترافیکی در سطح میکرو ایمنی ترافیکی سطح مقطع، اثر زون، مدل اثرات تصادفی تابع عملکرد ایمنی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
بهداشت و امنیت شیمی
چکیده انگلیسی
There have been great efforts to develop traffic crash prediction models for various types of facilities. The crash models have played a key role to identify crash hotspots and evaluate safety countermeasures. In recent, many macro-level crash prediction models have been developed to incorporate highway safety considerations in the long-term transportation planning process. Although the numerous macro-level studies have found that a variety of demographic and socioeconomic zonal characteristics have substantial effects on traffic safety, few studies have attempted to coalesce micro-level with macro-level data from existing geographic units for estimating crash models. In this study, the authors have developed a series of intersection crash models for total, severe, pedestrian, and bicycle crashes with macro-level data for seven spatial units. The study revealed that the total, severe, and bicycle crash models with ZIP-code tabulation area data performs the best, and the pedestrian crash models with census tract-based data outperforms the competing models. Furthermore, it was uncovered that intersection crash models can be drastically improved by only including random-effects for macro-level entities. Besides, the intersection crash models are even further enhanced by including other macro-level variables. Lastly, the pedestrian and bicycle crash modeling results imply that several macro-level variables (e.g., population density, proportions of specific age group, commuters who walk, or commuters using bicycle, etc.) can be a good surrogate exposure for those crashes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Accident Analysis & Prevention - Volume 102, May 2017, Pages 213-226
Journal: Accident Analysis & Prevention - Volume 102, May 2017, Pages 213-226
نویسندگان
Jaeyoung Lee, Mohamed Abdel-Aty, Qing Cai,