کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4978623 1452895 2017 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Causal inference framework for generalizable safety effect estimates
ترجمه فارسی عنوان
چارچوب استنتاج عقلانی برای برآورد ایمنی قابل تعمیم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بهداشت و امنیت شیمی
چکیده انگلیسی
The method is then applied to a dataset with a “no-treatment” scenario where the treatments were: 1) randomly selected and 2) selected based on crash history. Given the “no-treatment” outcome, it is known that the CMFs should have a value of 1 in order to be considered accurate. The standard negative binomial and mixed effects negative binomial regression models were applied in the analysis. It was found that, of the two regression methods, the ATE CMFs developed using the standard negative binomial were the most accurate. Finally, potential sources of bias in the EB method are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Accident Analysis & Prevention - Volume 104, July 2017, Pages 74-87
نویسندگان
, ,