کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4978692 1452893 2017 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Geographically weighted negative binomial regression applied to zonal level safety performance models
ترجمه فارسی عنوان
رگرسیون دو جانبه منفی با توجه به جغرافیایی به مدل های عملکرد ایمنی سطح منطقه ای اعمال می شود
کلمات کلیدی
مدل های عملکرد ایمنی، وابستگی فضایی، مدل های فضایی محلی، رگرسیون پوسیون وزن جغرافیایی، رگرسیون دو جانبه منفی جغرافیایی وزنی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بهداشت و امنیت شیمی
چکیده انگلیسی
Generalized Linear Models (GLM) with negative binomial distribution for errors, have been widely used to estimate safety at the level of transportation planning. The limited ability of this technique to take spatial effects into account can be overcome through the use of local models from spatial regression techniques, such as Geographically Weighted Poisson Regression (GWPR). Although GWPR is a system that deals with spatial dependency and heterogeneity and has already been used in some road safety studies at the planning level, it fails to account for the possible overdispersion that can be found in the observations on road-traffic crashes. Two approaches were adopted for the Geographically Weighted Negative Binomial Regression (GWNBR) model to allow discrete data to be modeled in a non-stationary form and to take note of the overdispersion of the data: the first examines the constant overdispersion for all the traffic zones and the second includes the variable for each spatial unit. This research conducts a comparative analysis between non-spatial global crash prediction models and spatial local GWPR and GWNBR at the level of traffic zones in Fortaleza/Brazil. A geographic database of 126 traffic zones was compiled from the available data on exposure, network characteristics, socioeconomic factors and land use. The models were calibrated by using the frequency of injury crashes as a dependent variable and the results showed that GWPR and GWNBR achieved a better performance than GLM for the average residuals and likelihood as well as reducing the spatial autocorrelation of the residuals, and the GWNBR model was more able to capture the spatial heterogeneity of the crash frequency.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Accident Analysis & Prevention - Volume 106, September 2017, Pages 254-261
نویسندگان
, , ,