کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4986556 | 1454952 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Predicting fine particle erosion utilizing computational fluid dynamics
ترجمه فارسی عنوان
پیش بینی فرسایش ذرات ریز با استفاده از دینامیک سیالات محاسباتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
شیمی کلوئیدی و سطحی
چکیده انگلیسی
Sand flowing with produced fluids cause severe problems for the oil and gas industry, amid them material removal from pipelines has always been crucial. Solid particle erosion prediction in gases and liquids is challenging as many different parameters significantly affect erosion. Particle size is one of the parameters that has been investigated. Previous studies show that small, sharp particles cause severe erosion in both gas and liquid systems. This is particularly an important topic for oil and gas production conditions as small particles can pass through sand screens existing in sand exclusion and management systems. The current work utilizes Computational Fluid Dynamics (CFD) to calculate erosion caused by these particles in different geometries. The geometries include submerged jet impingement and elbows. The CFD utilizes an Eulerian-Lagrangian approach for erosion calculation. The aim of this study is to investigate the effect of CFD mesh and different turbulence models on predicting the behavior of small particles. A low-Reynolds number k-É turbulence model is employed to account for the turbulence effects. A very fine grid spacing is used near the walls to resolve the viscous sublayer and boundary layer and to aid in the examination of the effects of particle-fluid interaction in the near-wall region. Moreover, simulation results are compared with experimental data available in the literature for elbows and conducted during this investigation for fine particles submerged in an impinging slurry jet in order to validate the presented modeling approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wear - Volumes 376â377, Part B, 15 April 2017, Pages 1130-1137
Journal: Wear - Volumes 376â377, Part B, 15 April 2017, Pages 1130-1137
نویسندگان
Soroor Karimi, Siamack A. Shirazi, Brenton S. McLaury,