کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4986655 | 1454951 | 2017 | 48 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A computational fluid dynamics based artificial neural network model to predict solid particle erosion
ترجمه فارسی عنوان
دینامیک سیالات محاسباتی بر اساس مصنوعی مدل شبکه عصبی برای پیش بینی فرسایش ذرات جامد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
شیمی کلوئیدی و سطحی
چکیده انگلیسی
This study employs machine learning approach along with CFD-based methodology to develop robust erosion models. A generalized model is developed based on experiments conducted on 90-degree elbows of 1-in. diameter and made from Inconel 718, Nickel Alloy 825, 25% Cr, Nickel Alloy 925, and 13% Cr L-80 materials. The Baker Hughes erosion model developed in 2008 is studied as a baseline. Statistical analysis was performed on CFD output parameters to identify those that most affect erosion rates. A correlation analysis and non-parametric statistical analysis is performed resulting in the development of two new regression models based on turbulent kinetic energy, and surface shear stress was developed. A 25-% improvement is observed in the predictions of cumulative erosion rate error compared to baseline. An artificial neural network with multilayer feed-forward model with the back-propagation algorithm and Levenberg-Marquardt training was developed. This model, along with Bayesian regularization, reduced cumulative error to less than 10%, compared to more than 40% in the baseline Baker Hughes model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wear - Volumes 378â379, 15 May 2017, Pages 198-210
Journal: Wear - Volumes 378â379, 15 May 2017, Pages 198-210
نویسندگان
D.A. Pandya, B.H. Dennis, R.D. Russell,