کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
498673 863008 2011 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS
چکیده انگلیسی

It is well-known that the conventional reproducing kernel particle method (RKPM) is unfavorable when dealing with the derivative type essential boundary conditions [1], [2] and [3]. To remedy this issue a group of meshless methods in which the derivatives of a function can be incorporated in the formulation of the corresponding interpolation operator will be discussed. Formulation of generalized moving least squares (GMLS) on a domain and GMLS on a finite set of points will be presented. The generalized RKPM will be introduced as the discretized form of GMLS on a domain. Another method that helps to deal with derivative type essential boundary conditions is the gradient RKPM which incorporates the first gradients of the function in the reproducing equation. In present work the formulation of gradient RKPM will be derived in a more general framework. Some important properties of the shape functions for the group of methods under consideration are discussed. Moreover error estimates for the corresponding interpolants are derived. By generalizing the concept of corrected collocation method, it will be seen that in the case of employing each of the proposed methods to a BVP, not only the essential boundary conditions involving the function, but also the essential boundary conditions which involve the derivatives could be satisfied exactly at particles which are located on the boundary.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 200, Issues 5–8, 15 January 2011, Pages 540–576
نویسندگان
, , ,