کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
498705 863009 2010 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Reuleaux plasticity: Analytical backward Euler stress integration and consistent tangent
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Reuleaux plasticity: Analytical backward Euler stress integration and consistent tangent
چکیده انگلیسی

Analytical backward Euler stress integration is presented for a deviatoric yielding criterion based on a modified Reuleaux triangle. The criterion is applied to a cone model which allows control over the shape of the deviatoric section, independent of the internal friction angle on the compression meridian. The return strategy and consistent tangent are fully defined for all three regions of principal stress space in which elastic trial states may lie. Errors associated with the integration scheme are reported. These are shown to be less than 3% for the case examined. Run time analysis reveals a 2.5–5.0 times speed-up (at a material point) over the iterative Newton–Raphson backward Euler stress return scheme. Two finite-element analyses are presented demonstrating the speed benefits of adopting this new formulation in larger boundary value problems. The simple modified Reuleaux surface provides an advance over Mohr–Coulomb and Drucker–Prager yield envelopes in that it incorporates dependencies on both the Lode angle and intermediate principal stress, without incurring the run time penalties of more sophisticated models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 199, Issues 25–28, 15 May 2010, Pages 1733–1743
نویسندگان
, , ,