کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
498759 863011 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Discontinuous Petrov–Galerkin method with optimal test functions for thin-body problems in solid mechanics
چکیده انگلیسی

We study the applicability of the discontinuous Petrov–Galerkin (DPG) variational framework for thin-body problems in structural mechanics. Our numerical approach is based on discontinuous piecewise polynomial finite element spaces for the trial functions and approximate, local computation of the corresponding ‘optimal’ test functions. In the Timoshenko beam problem, the proposed method is shown to provide the best approximation in an energy-type norm which is equivalent to the L2-norm for all the unknowns, uniformly with respect to the thickness parameter. The same formulation remains valid also for the asymptotic Euler–Bernoulli solution. As another one-dimensional model problem we consider the modelling of the so called basic edge effect in shell deformations. In particular, we derive a special norm for the test space which leads to a robust method in terms of the shell thickness. Finally, we demonstrate how a posteriori error estimator arising directly from the discontinuous variational framework can be utilized to generate an optimal hp-mesh for resolving the boundary layer.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 200, Issues 9–12, 1 February 2011, Pages 1291–1300
نویسندگان
, , ,