کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
498847 863015 2010 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical multiscale solution strategy for fracturing heterogeneous materials
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Numerical multiscale solution strategy for fracturing heterogeneous materials
چکیده انگلیسی

This paper presents a numerical multiscale modelling strategy for simulating fracturing in materials where the fine-scale heterogeneities are fully resolved, with a particular focus on concrete. The fine-scale is modelled using a hybrid-Trefftz stress formulation for modelling propagating cohesive cracks. The very large system of algebraic equations that emerges from detailed resolution of the fine-scale structure requires an efficient iterative solver with a preconditioner that is appropriate for fracturing heterogeneous materials. This paper proposes a two-grid strategy for construction of the preconditioner that utilizes scale transition techniques derived for computational homogenization and represents an adaptation of the work of Miehe and Bayreuther [2] and its extension to fracturing heterogeneous materials. For the coarse scale, this paper investigates both classical C0C0-continuous displacement-based finite elements as well as C1C1-continuous elements. The preconditioned GMRES Krylov iterative solver with dynamic convergence tolerance is integrated with a constrained Newton method with local arc-length control and line searches. The convergence properties and performance of the parallel implementation of the proposed solution strategy is illustrated on two numerical examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 199, Issues 17–20, 1 March 2010, Pages 1100–1113
نویسندگان
, , , ,