کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
498847 | 863015 | 2010 | 14 صفحه PDF | دانلود رایگان |

This paper presents a numerical multiscale modelling strategy for simulating fracturing in materials where the fine-scale heterogeneities are fully resolved, with a particular focus on concrete. The fine-scale is modelled using a hybrid-Trefftz stress formulation for modelling propagating cohesive cracks. The very large system of algebraic equations that emerges from detailed resolution of the fine-scale structure requires an efficient iterative solver with a preconditioner that is appropriate for fracturing heterogeneous materials. This paper proposes a two-grid strategy for construction of the preconditioner that utilizes scale transition techniques derived for computational homogenization and represents an adaptation of the work of Miehe and Bayreuther [2] and its extension to fracturing heterogeneous materials. For the coarse scale, this paper investigates both classical C0C0-continuous displacement-based finite elements as well as C1C1-continuous elements. The preconditioned GMRES Krylov iterative solver with dynamic convergence tolerance is integrated with a constrained Newton method with local arc-length control and line searches. The convergence properties and performance of the parallel implementation of the proposed solution strategy is illustrated on two numerical examples.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 199, Issues 17–20, 1 March 2010, Pages 1100–1113