کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
499036 | 863024 | 2010 | 12 صفحه PDF | دانلود رایگان |

We present a rigorous procedure to derive coarse-grained red blood cell (RBC) models, which yield accurate mechanical response. Based on a semi-analytic theory the linear and nonlinear elastic properties of healthy and infected RBCs in malaria can be matched with those obtained in optical tweezers stretching experiments. The present analysis predicts correctly the membrane Young's modulus in contrast to about 50% error in predictions by previous models. In addition, we develop a stress-free model which avoids a number of pitfalls of existing RBC models, such as non-smooth or poorly controlled equilibrium shape and dependence of the mechanical properties on the initial triangulation quality. Here we employ dissipative particle dynamics for the implementation but the proposed model is general and suitable for use in many existing continuum and particle-based numerical methods.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 199, Issues 29–32, 1 June 2010, Pages 1937–1948