کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
499161 863030 2009 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique
چکیده انگلیسی

The Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) technique is one of the special techniques developed recently by the Team for Advanced Flow Simulation and Modeling (TAFSM) for FSI modeling of blood flow and arterial dynamics. The SCAFSI technique, which was introduced as an approximate FSI approach in arterial fluid mechanics, is based on the assumption that the arterial deformation during a cardiac cycle is driven mostly by the blood pressure. In the SCAFSI, first we compute a “reference” arterial deformation as a function of time, driven only by the blood pressure profile of the cardiac cycle. Then we compute a sequence of updates involving mesh motion, fluid dynamics calculations, and recomputing the arterial deformation. Although the SCAFSI technique was developed and tested in conjunction with the stabilized space–time FSI (SSTFSI) technique, it can also be used in conjunction with other FSI modeling techniques categorized as moving-mesh methods. The SSTFSI technique is based on the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation and includes the enhancements introduced recently by the TAFSM. The arterial structures can be modeled with the membrane or continuum elements, both of which are geometrically nonlinear, and the continuum element can be made of linearly-elastic or hyperelastic material (Mooney–Rivlin or Fung). Here we provide an overview of the SCAFSI technique and present a number of test computations for abdominal aortic and cerebral aneurysms, where the arterial geometries used in the computations are close approximations to the patient-specific image-based data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 198, Issues 45–46, 15 September 2009, Pages 3524–3533
نویسندگان
, , ,