کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
499166 | 863030 | 2009 | 10 صفحه PDF | دانلود رایگان |

In this article, we present a partitioned procedure for fluid–structure interaction problems in which contacts among different deformable bodies can occur. A typical situation is the movement of a thin valve (e.g. the aortic valve) immersed in an incompressible viscous fluid (e.g. the blood). In the proposed strategy the fluid and structure solvers are considered as independent “black-boxes” that exchange forces and displacements; the structure solvers are moreover not supposed to manage contact by themselves. The hypothesis of non-penetration among solid objects defines a non-convex optimization problem. To solve the latter, we use an internal approximation algorithm that is able to directly handle the cases of thin structures and self-contacts. A numerical simulation on an idealized aortic valve is finally realized with the aim of illustrating the proposed scheme.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 198, Issues 45–46, 15 September 2009, Pages 3603–3612