کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4993326 | 1457618 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Calculation of the permeability in porous media using the lattice Boltzmann method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, the lattice Boltzmann method (LBM) is used to simulate three-dimensional laminar flows in porous media and to calculate the associated permeability. An in-house, parallelized code using the message passing interface technique is employed for the study. Three different flow configurations are studied: first, by manually specifying solid cells in a face-centered cube (FCC); then, doing the same in a body-centered cube (BCC); and finally by reading the solid cells for a real 3D geometry from a set of experimental 2D computed tomography images. In all simulations, the Reynolds number is kept well below 1. It was found that the current LBM simulations yield good estimates for the permeability value. The impact of the employed force scheme and single- or multiple-relaxation time (SRT, MRT) was also studied. Although each force scheme (Guo-SRT, Guo-MRT and Shan-Chen-SRT) may show better results in some regions, the strong dependency of SRT models on relaxation time suggests that the proper choice of the force scheme, relaxation time and domain resolution is a compromise between the required accuracy and computational cost. First, higher resolutions lead as expected to increasingly accurate results but requires more computational cost and time. Second, the MRT model shows a lower viscosity dependence in comparison with SRT models but is somewhat slower. Also, the results are more sensitive to the relaxation time value for coarser domains. Furthermore, lower relaxation times necessitate a higher number of iterations to reach the steady state. It was also observed that permeability of both FCC and BCC structures are very close at large porosities. The last test case with the real geometry demonstrates that LB simulations can deliver the hydrodynamic properties in a 3D porous media, a very challenging issue for solvers when relying on classical Navier-Stokes equations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Fluid Flow - Volume 62, Part A, December 2016, Pages 93-103
Journal: International Journal of Heat and Fluid Flow - Volume 62, Part A, December 2016, Pages 93-103
نویسندگان
Amir Eshghinejadfard, László Daróczy, Gábor Janiga, Dominique Thévenin,