کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4995592 | 1458993 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An ultraweak DPG method for viscoelastic fluids
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We explore a vexing benchmark problem for viscoelastic fluid flows with the discontinuous Petrov-Galerkin (DPG) finite element method of Demkowicz and Gopalakrishnan [1], [2]. In our analysis, we develop an intrinsic a posteriori error indicator which we use for adaptive mesh generation. The DPG method is useful for the problem we consider because the method is inherently stable-requiring no stabilization of the linearized discretization in order to handle the advective terms in the model. Because stabilization is a pressing issue in these models, this happens to become a very useful property of the method which simplifies our analysis. This built-in stability at all length scales and the a posteriori error indicator additionally allows for the generation of parameter-specific meshes starting from a common coarse initial mesh. A DPG discretization always produces a symmetric positive definite stiffness matrix. This feature allows us to use the most efficient direct solvers for all of our computations. We use the Camellia finite element software package [3], [4] for all of our analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 247, September 2017, Pages 107-122
Journal: Journal of Non-Newtonian Fluid Mechanics - Volume 247, September 2017, Pages 107-122
نویسندگان
B. Keith, P. Knechtges, N.V. Roberts, S. Elgeti, M. Behr, L. Demkowicz,