کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
499914 | 863065 | 2007 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A discontinuous Galerkin method for higher-order ordinary differential equations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we propose a new discontinuous finite element method to solve initial value problems for ordinary differential equations and prove that the finite element solution exhibits an optimal O(Δtp+1) convergence rate in the L2L2 norm. We further show that the p-degree discontinuous solution of differential equation of order m and its first m − 1 derivatives are O(Δt2p+2−m) superconvergent at the end of each step. We also establish that the p-degree discontinuous solution is O(Δtp+2) superconvergent at the roots of (p + 1 − m)-degree Jacobi polynomial on each step. Finally, we present several computational examples to validate our theory and construct asymptotically correct a posteriori error estimates.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 197, Issues 1–4, 1 December 2007, Pages 202–218
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 197, Issues 1–4, 1 December 2007, Pages 202–218
نویسندگان
Slimane Adjerid, Helmi Temimi,