کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
499939 863066 2006 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence analysis of a discontinuous finite element formulation based on second order derivatives
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Convergence analysis of a discontinuous finite element formulation based on second order derivatives
چکیده انگلیسی

A new discontinuous Galerkin formulation is introduced for the elliptic reaction–diffusion problem that incorporates local second order distributional derivatives. The corresponding bilinear form satisfies both coercivity and continuity properties on the broken Hilbert space of H2 functions. For piecewise polynomial approximations of degree p ⩾ 2, optimal uniform h and p convergence rates are obtained in the broken H1 and H2 norms. Convergence in L2 is optimal for p ⩾ 3, if the computational mesh is strictly rectangular. If the mesh consists of skewed elements, then optimal convergence is only obtained if the corner angles satisfy a given regularity condition. For p = 2, only suboptimal h convergence rates in L2 are obtained and for linear polynomial approximations the method does not converge.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 195, Issues 25–28, 1 May 2006, Pages 3461–3482
نویسندگان
, , ,