کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
500161 | 863074 | 2006 | 12 صفحه PDF | دانلود رایگان |

This work is mainly concerned with a general strategy, based on well known concepts of classical mechanics, for taking into account initial conditions in frequency-domain (FD) and time-domain (TD) analyses. A general approach, extended here to three-dimensional applications, is presented. Special problems associated with analyses through Discrete-Fourier-Transform (DFT) algorithms, as those occurring in consequence of a non-correct choice of extended period or those connected with aliasing phenomenon, are also discussed. Furthermore, an alternative starting procedure for time-marching schemes (in TD analyses) is proposed. At the end of the paper, to validate the proposed techniques and to demonstrate their generality, two- and three-dimensional problems with non-homogeneous initial conditions are solved through frequency- and time-domain approaches by employing the Finite Element Method (FEM). Numerical results are compared with existing analytical solutions.
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 195, Issues 33–36, 1 July 2006, Pages 4371–4382