کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5001846 | 1461085 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Intelligent recognition of gas-oil-water three-phase flow regime and determination of volume fraction using radial basis function
ترجمه فارسی عنوان
شناخت هوشمندانه رژیم جریان سه فازی گاز و نفت و تعیین مقدار حجم با استفاده از تابع پایه شعاعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
جریان سه فاز، تشخیص الگو، پیش بینی کسر دوره، تابع پایه شعاعی،
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
چکیده انگلیسی
The problem of how to accurately measure the flow rate of oil-gas-water mixtures in a pipeline remains one of the key challenges in the petroleum industry. This paper proposes a new methodology for identifying flow regimes and predicting volume fractions in gas-oil-water multiphase systems using dual energy fan-beam gamma-ray attenuation technique and artificial neural networks. The novelty of this study in comparison with previous works, is using just 4 extracted features (photo peaks of 241Am and 137Cs in 2 detectors) from the gamma ray spectrums instead of using the whole gamma ray spectrum, which reduces the undesired noises and also improves the speed of recognition in real situations. Radial basis function was used for developing the neural network model in MATLAB software in order to classify the flow patterns (annular, stratified and homogenous) and predict the value of volume fractions. The ideal and static theoretical models for flow regimes have been developed using MCNP-X code. The proposed networks could correctly recognize all the three different flow regimes and also determine volume fractions with mean absolute error of less than 5.68% according to the recognized regime.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Flow Measurement and Instrumentation - Volume 54, April 2017, Pages 39-45
Journal: Flow Measurement and Instrumentation - Volume 54, April 2017, Pages 39-45
نویسندگان
G.H. Roshani, E. Nazemi, M.M. Roshani,