کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
500213 863076 2007 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Partitioned versus global Krylov subspace iterative methods for FE solution of 3-D Biot’s problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Partitioned versus global Krylov subspace iterative methods for FE solution of 3-D Biot’s problem
چکیده انگلیسی

Finite element analysis of 3-D Biot’s consolidation problem needs fast solution of discretized large 2×22×2 block symmetric indefinite linear systems. In this paper, partitioned iterative methods and global Krylov subspace iterative methods are investigated and compared. The partitioned iterative methods considered include stationary partitioned iteration and non-stationary Prevost’s PCG procedure. The global Krylov subspace methods considered include MINRES and Symmetric QMR (SQMR). Two efficient preconditioners are proposed for global methods. Numerical experiments based on a pile-group problem and simple footing problems with varied soil profiles are carried out. Numerical results show that when used in conjunction with suitable preconditioners, global Krylov subspace iterative methods are more promising for large-scale computations, and further improvement could be possible if significant differences in the solid material properties are addressed in these preconditioned iterative methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 196, Issues 25–28, 1 May 2007, Pages 2737–2750
نویسندگان
, , ,