کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5004078 | 1461189 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A hybrid intelligent multi-fault detection method for rotating machinery based on RSGWPT, KPCA and Twin SVM
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a hybrid intelligent method for multi-fault detection of rotating machinery, in which three methods, i.e. including the redundant second generation wavelet package transform (RSGWPT), the kernel principal component analysis (KPCA) and the twin support vector machine (TWSVM), are combined. Firstly, RSGWPT is used to extract feature vectors from representative statistical characteristics in the decomposition frequency band, and then the KPCA in the feature space is performed to reduce the dimension of features and to extract the dominant features for the following classification. Finally, a novel support vector machine, called twin support vector machine is used to construct a multi-class classifier. Inputting superior features to this classifier, the condition of the monitored machine component can be determined. Experimental results demonstrate that the proposed hybrid method is effective for multi-fault detection of rotating machinery. The TWSVM is also indicated that has better classification performance and faster convergence speed than the normal SVM.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 66, January 2017, Pages 249-261
Journal: ISA Transactions - Volume 66, January 2017, Pages 249-261
نویسندگان
Zhiwen Liu, Wei Guo, Jinhai Hu, Wensheng Ma,