کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5004241 1461188 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: A comparative study
ترجمه فارسی عنوان
یک رویکرد مبتنی بر داده ها برای نظارت بر وضعیت تیغه های توربین بادی با استفاده از سیگنال های ارتعاش از طریق الگوریتم درخت اول و الگوریتم درخت کاربردی: یک مطالعه مقایسه ای
کلمات کلیدی
تشخیص گسل، نظارت بر وضعیت بهداشتی سازمانی، تیغه توربین بادی، ویژگی های آماری، بهترین الگوریتم درخت درخت، الگوریتم درخت های عملکردی،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی
Wind energy is one of the important renewable energy resources available in nature. It is one of the major resources for production of energy because of its dependability due to the development of the technology and relatively low cost. Wind energy is converted into electrical energy using rotating blades. Due to environmental conditions and large structure, the blades are subjected to various vibration forces that may cause damage to the blades. This leads to a liability in energy production and turbine shutdown. The downtime can be reduced when the blades are diagnosed continuously using structural health condition monitoring. These are considered as a pattern recognition problem which consists of three phases namely, feature extraction, feature selection, and feature classification. In this study, statistical features were extracted from vibration signals, feature selection was carried out using a J48 decision tree algorithm and feature classification was performed using best-first tree algorithm and functional trees algorithm. The better algorithm is suggested for fault diagnosis of wind turbine blade.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 67, March 2017, Pages 160-172
نویسندگان
, ,