کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5004551 1461197 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Synchronization of chaotic systems and identification of nonlinear systems by using recurrent hierarchical type-2 fuzzy neural networks
ترجمه فارسی عنوان
هماهنگ سازی سیستم های هرج و مرج و شناسایی سیستم های غیر خطی با استفاده از شبکه های عصبی فازی تکرار سلولی سلسله مراتبی
کلمات کلیدی
سیستم های فازی مکرر، شبکه عصبی فازی نوع 2، سیستم های فازی سلسله مراتبی فیلتر کالمن کوباتی مربع ریشه،
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
چکیده انگلیسی


- A new hierarchical recurrent type-2 fuzzy neural network (HRT2FNN) is proposed.
- A new learning algorithm based on square-root cubature Kalman filter, is presented.
- Universal approximation of the proposed HRT2FNN is proved.
- Effectiveness of the proposed method is verified by several simulation examples.

This paper proposes a novel approach for training of proposed recurrent hierarchical interval type-2 fuzzy neural networks (RHT2FNN) based on the square-root cubature Kalman filters (SCKF). The SCKF algorithm is used to adjust the premise part of the type-2 FNN and the weights of defuzzification and the feedback weights. The recurrence property in the proposed network is the output feeding of each membership function to itself. The proposed RHT2FNN is employed in the sliding mode control scheme for the synchronization of chaotic systems. Unknown functions in the sliding mode control approach are estimated by RHT2FNN. Another application of the proposed RHT2FNN is the identification of dynamic nonlinear systems. The effectiveness of the proposed network and its learning algorithm is verified by several simulation examples. Furthermore, the universal approximation of RHT2FNNs is also shown.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 58, September 2015, Pages 318-329
نویسندگان
, ,