کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5005150 1369010 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tuning fuzzy PD and PI controllers using reinforcement learning
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله
Tuning fuzzy PD and PI controllers using reinforcement learning
چکیده انگلیسی
In this paper, we propose a new auto-tuning fuzzy PD and PI controllers using reinforcement Q-learning (QL) algorithm for SISO (single-input single-output) and TITO (two-input two-output) systems. We first, investigate the design parameters and settings of a typical class of Fuzzy PD (FPD) and Fuzzy PI (FPI) controllers: zero-order Takagi-Sugeno controllers with equidistant triangular membership functions for inputs, equidistant singleton membership functions for output, Larsen's implication method, and average sum defuzzification method. Secondly, the analytical structures of these typical fuzzy PD and PI controllers are compared to their classical counterpart PD and PI controllers. Finally, the effectiveness of the proposed method is proven through simulation examples.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 49, Issue 4, October 2010, Pages 543-551
نویسندگان
, , , ,