کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5005252 | 1369017 | 2011 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
کنترل و سیستم های مهندسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper we propose a new approach to on-line Takagi-Sugeno fuzzy model identification. It combines a recursive fuzzy c-means algorithm and recursive least squares. First the method is derived and than it is tested and compared on a benchmark problem of the Mackey-Glass time series with other established on-line identification methods. We showed that the developed algorithm gives a comparable degree of accuracy to other algorithms. The proposed algorithm can be used in a number of fields, including adaptive nonlinear control, model predictive control, fault detection, diagnostics and robotics. An example of identification based on a real data of the waste-water treatment process is also presented.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: ISA Transactions - Volume 50, Issue 2, April 2011, Pages 159-169
Journal: ISA Transactions - Volume 50, Issue 2, April 2011, Pages 159-169
نویسندگان
Dejan Dovžan, Igor Škrjanc,