کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5016431 | 1465301 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Enabling reduced-order data-driven nonlinear identification and modeling through naïve elastic net regularization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی مکانیک
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This work discusses an improved method of reduced-order modeling for existing data-driven nonlinear identification techniques through the incorporation of naïve elastic net regularization. The data-driven methods considered for this study operate using basis functions to represent the observed nonlinearity. Elastic net regularization is used to minimize the number of non-zero coefficients, thus modifying the basis functions and providing a compact representation. The ability of the naïve elastic net to provide reduced-order nonlinear models that can both accurately fit various data sets and computationally simulate new responses is illustrated through studies considering both synthetic data and experimental data. In both cases, the results obtained with the naïve elastic net are shown to match or outperform those from other traditional methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Non-Linear Mechanics - Volume 94, September 2017, Pages 46-58
Journal: International Journal of Non-Linear Mechanics - Volume 94, September 2017, Pages 46-58
نویسندگان
Patrick T. Brewick, Sami F. Masri, Biagio Carboni, Walter Lacarbonara,