کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5018225 1467038 2017 33 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method
ترجمه فارسی عنوان
یک روش بالقوه متوسط ​​برای نیروی مکانیک شکستن مواد ناهمگن با استفاده از روش عناصر شبکه
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی مکانیک
چکیده انگلیسی
Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith's approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of the Mechanics and Physics of Solids - Volume 105, August 2017, Pages 116-130
نویسندگان
, , , ,