کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5024647 | 1470444 | 2017 | 37 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The Fisher-KPP problem with doubly nonlinear “fast” diffusion
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The famous Fisher-KPP reaction-diffusion model combines linear diffusion with the typical Fisher-KPP reaction term, and appears in a number of relevant applications. It is remarkable as a mathematical model since, in the case of linear diffusion, it possesses a family of travelling waves that describe the asymptotic behaviour of a wide class of solutions 0â¤u(x,t)â¤1 of the problem posed in the real line. The existence of propagation wave with finite speed has been confirmed in the cases of “slow” and “pseudo-linear” doubly nonlinear diffusion too, see Audrito and Vázquez (2016). We investigate here the corresponding theory with “fast” doubly nonlinear diffusion and we find that general solutions show a non-TW asymptotic behaviour, and exponential propagation in space for large times. Finally, we prove precise bounds for the level sets of general solutions, even when we work in with spacial dimension Nâ¥1. In particular, taking spatial logarithmic scale, we show that the location of the positive level sets is approximately linear for large times. This represents a strong departure from the linear case, in which the location of the level sets is not purely linear, but presents the celebrated logarithmic deviation for large times.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis - Volume 157, July 2017, Pages 212-248
Journal: Nonlinear Analysis - Volume 157, July 2017, Pages 212-248
نویسندگان
Alessandro Audrito, Juan Luis Vázquez,