کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5024661 | 1470450 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Î-convergence of equi-coercive nonlinear energies defined on vector-valued functions, with non-uniformly bounded coefficients
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The present paper deals with the asymptotic behavior of equi-coercive sequences {â±n} of nonlinear functionals defined over vector-valued functions in W01,p(Ω)M, where p>1, Mâ¥1, and Ω is a bounded open set of RN, Nâ¥2. The strongly local energy density Fn(â
,Du) of the functional â±n satisfies a Lipschitz condition with respect to the second variable, which is controlled by a positive sequence {an} which is only bounded in some suitable space Lr(Ω). We prove that the sequence {â±n}Î-converges for the strong topology of Lp(Ω)M to a functional â± which has a strongly local density F(â
,Du) for sufficiently regular functions u. This compactness result extends former results on the topic, which are based either on maximum principle arguments in the nonlinear scalar case, or adapted div-curl lemmas in the linear case. Here, the vectorial character and the nonlinearity of the problem need a new approach based on a careful analysis of the asymptotic minimizers associated with the functional â±n. The relevance of the conditions which are imposed to the energy density Fn(â
,Du), is illustrated by several examples including some classical hyperelastic energies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 151, March 2017, Pages 187-207
Journal: Nonlinear Analysis: Theory, Methods & Applications - Volume 151, March 2017, Pages 187-207
نویسندگان
M. Briane, J. Casado-DÃaz, M. Luna-Laynez, A. Pallares-MartÃn,