کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
503996 864258 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sparse group composition for robust left ventricular epicardium segmentation
ترجمه فارسی عنوان
ترکیب گروه اسپارتی برای جداسازی اپیکاردی بطن چپ قوی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی

Left ventricular (LV) epicardium segmentation in cardiac magnetic resonance images (MRIs) is still a challenging task, where the a-priori knowledge like those that incorporate the heart shape model is usually used to derive reasonable segmentation results. In this paper, we propose a sparse group composition (SGC) approach to model multiple shapes simultaneously, which extends conventional sparsity-based single shape prior modeling to incorporate a-priori spatial constraint information among multiple shapes on-the-fly. Multiple interrelated shapes (shapes of epi- and endo-cardium of myocardium in the case of LV epicardium segmentation) are regarded as a group, and sparse linear composition of training groups is computed to approximate the input group. A framework of iterative procedure of refinement based on SGC and segmentation based on deformation model is utilized for LV epicardium segmentation, in which an improved shape-constraint gradient Chan-Vese model (GCV) acted as deformation model. Compared with the standard sparsity-based single shape prior modeling, the refinement procedure has strong robust for relative gross and not much sparse errors in the input shape and the initial epicardium location can be estimated without complicated landmark detection due to modeling spatial constraint information among multiple shapes effectively. Proposed method was validated on 45 cardiac cine-MR clinical datasets and the results were compared with expert contours. The average perpendicular distance (APD) error of contours is 1.50 ± 0.29 mm, and the dice metric (DM) is 0.96 ± 0.01. Compared to the state-of-the-art methods, our proposed approach appealed competitive segmentation performance and improved robustness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 46, Part 1, December 2015, Pages 56–63
نویسندگان
, , , , , , ,