کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5042082 1474254 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimating the dimensionality of intelligence like data using Exploratory Graph Analysis
ترجمه فارسی عنوان
برآورد ابعاد هوش از جمله داده ها با استفاده از تجزیه و تحلیل نمودار اکتشافی
موضوعات مرتبط
علوم انسانی و اجتماعی روانشناسی روانشناسی تجربی و شناختی
چکیده انگلیسی


- A new method for estimating intelligence dimensions, Exploratory Graph Analysis, is presented.
- Real and simulated data sets are analyzed by Exploratory Graph Analysis and other methods.
- Exploratory Graph Analysis is superior to exploratory and confirmatory factor analysis.

This study compared various exploratory and confirmatory factor methods for recovering factors of cognitive test-like data. We first note the problems encountered by several widely used methods, such as parallel analysis, minimum average partial procedure, and confirmatory factor analysis, in estimating the number of dimensions underlying performance on test batteries. We then argue that a new method, Exploratory Graph Analysis (EGA), can more accurately uncover underlying dimensions or factors and demonstrate how this method outperforms the other methods. We use several published data sets to demonstrate the advantages of EGA. We conclude that a combination of EGA and confirmatory factor analysis or structural equation modeling may be the ideal in precisely specifying latent factors and their relations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Intelligence - Volume 62, May 2017, Pages 54-70
نویسندگان
, ,