کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
504360 | 864296 | 2010 | 14 صفحه PDF | دانلود رایگان |

This paper presents an automatic method for segmentation of brain structures using their symmetry and tissue type information. The proposed method generates segmented structures that have homogenous tissues. It benefits from general symmetry of the brain structures in the two hemispheres. It also benefits from the tissue regions generated by fuzzy c-means clustering. All in all, the proposed method can be described as a dynamic knowledge-based method that eliminates the need for statistical shape models of the structures while generating accurate segmentation results. The proposed approach is implemented in MATLAB and tested on the Internet Brain Segmentation Repository (IBSR) datasets. To this end, it is applied to the segmentation of caudate and ventricles three-dimensionally in magnetic resonance images (MRI) of the brain. Impacts of each of the steps of the proposed approach are demonstrated through experiments. It is shown that the proposed method generates accurate segmentation results that are insensitive to initialization and parameter selection. The proposed method is compared to four previous methods illustrating advantages and limitations of each method.
Journal: Computerized Medical Imaging and Graphics - Volume 34, Issue 3, April 2010, Pages 236–249