کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505076 864469 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
EEG-based emotion estimation using Bayesian weighted-log-posterior function and perceptron convergence algorithm
چکیده انگلیسی

This paper addresses the emotion recognition problem from electroencephalogram signals, in which emotions are represented on the valence and arousal dimensions. Fast Fourier transform analysis is used to extract features and the feature selection based on Pearson correlation coefficient is applied. This paper proposes a probabilistic classifier based on Bayes' theorem and a supervised learning using a perceptron convergence algorithm. To verify the proposed methodology, we use an open database. An emotion is defined as two-level class and three-level class in both valence and arousal dimensions. For the two-level class case, the average accuracy of the valence and arousal estimation is 70.9% and 70.1%, respectively. For the three-level class case, the average accuracy is 55.4% and 55.2%, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 12, 1 December 2013, Pages 2230–2237
نویسندگان
, ,