کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505152 864477 2013 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A supervised orthogonal discriminant projection for tumor classification using gene expression data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A supervised orthogonal discriminant projection for tumor classification using gene expression data
چکیده انگلیسی

An important application of gene expression data is tumor classification. Dimensionality reduction is a key step of tumor classification, as gene expression data is of high dimensionality and small sample size (SSS) and it contains a large number of redundant genes irrelevant to tumor phenotypes. Manifold learning is an excellent tool for dimensionality reduction and it is promising for gene expression data analysis. In this paper, an improved supervised orthogonal discriminant projection (SODP) is proposed for tumor classification. In SODP, an effective weight measurement between two nodes of the weight graph is designed according to both sample class information and local information. With the novel measurement, SODP can maximize the weighted difference between the non-local scatter and the local scatter, on the basis of locality preserving. The experimental results with five public tumor datasets demonstrate that the proposed SODP is quite efficient and feasible for tumor classification.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 5, 1 June 2013, Pages 568–575
نویسندگان
, ,