کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505294 864489 2013 4 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Statistical pitfalls in the comparison of multivariate causality measures for effective causality
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Statistical pitfalls in the comparison of multivariate causality measures for effective causality
چکیده انگلیسی

The study of Wu et al. (2011) [1] compared the performance of six different causality measures when the autoregressive process was estimated with the Dynamic Autoregressive Neuromagnetic Causal Imaging (DANCI) algorithm to help applied researchers in choosing the best method to estimate effective connectivity. This letter to the editor argues that four methodological restrictions limit the applicability of the results to actual applied research. First, there is no formal test for the significance of a connection between two channels. Second, the simulation results are affected by sizeable sampling variability. Third, only overestimation of the true model order is considered. Fourth, the comparison between methods always involves a joint hypothesis test. The letter discusses the limitations for applied researchers resulting from those restrictions and points to future research directions to overcome them.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 43, Issue 2, 1 February 2013, Pages 131–134
نویسندگان
, ,