کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
505689 | 864529 | 2007 | 9 صفحه PDF | دانلود رایگان |

This paper presents a new advanced automatic edge delineation model for the detection and diagnosis of prostate cancer on transrectal ultrasound (TRUS) images. The proposed model is to improve prostate boundary detection system by modifying a set of preprocessing algorithms including tree-structured nonlinear filter (TSF), directional wavelet transforms (DWT) and tree-structured wavelet transform (TSWT). The model consists of a preprocessing module and a segmentation module. The preprocessing module is implemented for noise suppression, image smoothing and boundary enhancement. The active contours model is used in the segmentation module for prostate boundary detection in two-dimensional (2D) TRUS images. Experimental results show that the addition of the preprocessing module improves the accuracy and sensitivity of the segmentation module, compared to the implementation of the segmentation module alone. It is believed that the proposed automatic boundary detection module for the TRUS images is a promising approach, which provides an efficient and robust detection and diagnosis strategy and acts as “second opinion” for the physician's interpretation of prostate cancer.
Journal: Computers in Biology and Medicine - Volume 37, Issue 11, November 2007, Pages 1591–1599