کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
505709 864530 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature extraction and dimensionality reduction for mass spectrometry data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Feature extraction and dimensionality reduction for mass spectrometry data
چکیده انگلیسی

Mass spectrometry is being used to generate protein profiles from human serum, and proteomic data obtained from mass spectrometry have attracted great interest for the detection of early stage cancer. However, high dimensional mass spectrometry data cause considerable challenges. In this paper we propose a feature extraction algorithm based on wavelet analysis for high dimensional mass spectrometry data. A set of wavelet detail coefficients at different scale is used to detect the transient changes of mass spectrometry data. The experiments are performed on 2 datasets. A highly competitive accuracy, compared with the best performance of other kinds of classification models, is achieved. Experimental results show that the wavelet detail coefficients are efficient way to characterize features of high dimensional mass spectra and reduce the dimensionality of high dimensional mass spectra.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 39, Issue 9, September 2009, Pages 818–823
نویسندگان
,