کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
505995 | 864553 | 2007 | 14 صفحه PDF | دانلود رایگان |

This work describes the use of a hidden Markov model (HMM), with a reduced number of states, which simultaneously learns amino acid sequence and secondary structure for proteins of known three-dimensional structure and it is used for two tasks: protein class prediction and fold recognition. The Protein Data Bank and the annotation of the SCOP database are used for training and evaluation of the proposed HMM for a number of protein classes and folds. Results demonstrate that the reduced state–space HMM performs equivalently, or even better in some cases, on classifying proteins than a HMM trained with the amino acid sequence. The major advantage of the proposed approach is that a small number of states is employed and the training algorithm is of low complexity and thus relatively fast.
Journal: Computers in Biology and Medicine - Volume 37, Issue 9, September 2007, Pages 1211–1224