کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
506599 864927 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Modeling and implementation of classification rule discovery by ant colony optimisation for spatial land-use suitability assessment
چکیده انگلیسی

This paper presents an integrated modeling method for multi-criteria land-use suitability assessment (LSA) using classification rule discovery (CRD) by ant colony optimisation (ACO) in ArcGIS. This new attempt applies artificial intelligent algorithms to intelligentise LSA by discovering suitability classification rules. The methodology is implemented as a tool called ACO–LSA. The tool can generate rules which are straightforward and comprehensible for users with high classification accuracy and simple rule list in solving CRD problems. A case study in the Macintyre Brook Catchment of southern Queensland in Australia is proposed to demonstrate the feasibility of this new modeling technique. The results have addressed the major advantages of this novel approach.

Research highlights
► Land-use suitability classification based on ant colony optimisation.
► Intelligentising land suitability assessment by discovering suitability classification rules.
► A GIS-based ACO–LSA tool which can discover appropriate classification rules on the basis of expert knowledge and field survey in a spatial context.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers, Environment and Urban Systems - Volume 35, Issue 4, July 2011, Pages 308–319
نویسندگان
, , ,