کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
507582 865133 2009 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Boosting a fast neural network for supervised land cover classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Boosting a fast neural network for supervised land cover classification
چکیده انگلیسی

It is demonstrated that the use of an ensemble of neural networks for routine land cover classification of multispectral satellite data can lead to a significant improvement in classification accuracy. Specifically, the AdaBoost.M1 algorithm is applied to a sequence of three-layer, feed-forward neural networks. In order to overcome the drawback of long training time for each network in the ensemble, the networks are trained with an efficient Kalman filter algorithm. On the basis of statistical hypothesis tests, classification performance on multispectral imagery is compared with that of maximum likelihood and support vector machine classifiers. Good generalization accuracies are obtained with computation times of the order of 1 h or less. The algorithms involved are described in detail and a software implementation in the ENVI/IDL image analysis environment is provided.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 35, Issue 6, June 2009, Pages 1280–1295
نویسندگان
,