کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
507632 865136 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
FDTD3C—A FORTRAN program to model multi-component seismic waves for vertically heterogeneous attenuative media
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
FDTD3C—A FORTRAN program to model multi-component seismic waves for vertically heterogeneous attenuative media
چکیده انگلیسی

Full-waveform seismic response of horizontally layered media can be calculated by semi-analytical methods. However, for gradient velocity and randomly heterogeneous structures the semi-analytical methods face difficulties. In such cases, numerical methods such as the finite-difference (FD) method have to be used. We develop an efficient numerical scheme to calculate plane-wave response of vertically heterogeneous attenuative media by applying Radon transform to the three-dimensional wave equation. The scheme employs fourth-order FD operator in space and second-order FD operator in time to solve the wave equation. In order to facilitate applicability of the scheme we introduce the FORTRAN code FDTD3C which implements the algorithm and provides multi-component response of the media to oblique incident P-, SV-, and SH-waves incoming from arbitrary azimuth. The calculated components are three particle velocity components in three Cartesian directions, and divergence and rotation of the wavefield. The code is extremely efficient and is capable of incorporating highly fluctuating subsurface velocity and attenuation models. This program is intended for all FD users who are concerned with full-waveform seismic modelling and inversion. Wide range of applicability of the code is demonstrated with a set of numerical examples.


► A FORTRAN code to generate multi-component seismic traces is developed.
► The code is able to incorporate highly fluctuating velocity and attenuation models.
► The code is highly efficient due to applying a 1D grid.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 51, February 2013, Pages 314–323
نویسندگان
, ,