کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
507709 865140 2011 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
چکیده انگلیسی

This paper investigates the ability of genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) techniques for groundwater depth forecasting. Five different GP and ANFIS models comprising various combinations of water table depth values from two stations, Bondville and Perry, are developed to forecast one-, two- and three-day ahead water table depths. The root mean square errors (RMSE), scatter index (SI), Variance account for (VAF) and coefficient of determination (R2) statistics are used for evaluating the accuracy of models. Based on the comparisons, it was found that the GP and ANFIS models could be employed successfully in forecasting water table depth fluctuations. However, GP is superior to ANFIS in giving explicit expressions for the problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Geosciences - Volume 37, Issue 10, October 2011, Pages 1692–1701
نویسندگان
, ,